skip to main content


Search for: All records

Creators/Authors contains: "Pettit, E. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Submarine melting has been implicated in the accelerated retreat of marine‐terminating glaciers globally. Energetic ocean flows, such as subglacial discharge plumes, are known to enhance submarine melting in their immediate vicinity. Using observations and a large eddy simulation, we demonstrate that discharge plumes emit high‐frequency internal gravity waves that propagate along glacier termini and transfer energy to distant regions of the terminus. Our analysis of wave characteristics and their correlation with subglacial discharge forcing suggest that they derive their energy from turbulent motions within the discharge plume and its surface outflow. Accounting for the near‐terminus velocities associated with these waves increases predicted melt rates by up to 70%. This may help to explain known discrepancies between observed melt rates and theoretical predictions. Because the dynamical ingredients—a buoyant plume rising through a stratified ocean—are common to many tidewater glacier systems, such internal waves are likely to be widespread.

     
    more » « less
  2. null (Ed.)
    Thwaites Glacier is the most rapidly changing outlet of the West Antarctic Ice Sheet and adds large uncertainty to 21st century sea-level rise predictions. Here, we present the first direct observations of ocean temperature, salinity, and oxygen beneath Thwaites Ice Shelf front, collected by an autonomous underwater vehicle. On the basis of these data, pathways and modification of water flowing into the cavity are identified. Deep water underneath the central ice shelf derives from a previously underestimated eastern branch of warm water entering the cavity from Pine Island Bay. Inflow of warm and outflow of melt-enriched waters are identified in two seafloor troughs to the north. Spatial property gradients highlight a previously unknown convergence zone in one trough, where different water masses meet and mix. Our observations show warm water impinging from all sides on pinning points critical to ice-shelf stability, a scenario that may lead to unpinning and retreat. 
    more » « less